

Shared Information and Virtual Surfaces

Stephen C. Hayne
Cap Smith
Leo Vijayasarathy

Colorado State University Computer Information Systems

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate of mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE JAN 2005		2. REPORT TYPE			RED 5 to 00-00-2005
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER
Shared Informatio	n and Virtual Syster	ms		5b. GRANT NUM	1BER
				5c. PROGRAM E	LEMENT NUMBER
6. AUTHOR(S)				5d. PROJECT NU	JMBER
				5e. TASK NUMB	ER
				5f. WORK UNIT	NUMBER
	ZATION NAME(S) AND AC iversity,Computer I	` /	s,Fort	8. PERFORMING REPORT NUMB	GORGANIZATION ER
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	ND ADDRESS(ES)		10. SPONSOR/M	ONITOR'S ACRONYM(S)
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited			
	otes Knowledge Manage deral Rights License		shop, 11-13 Jan 2	2005, San Die	go, CA. U.S.
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF	18. NUMBER	19a. NAME OF
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 49	RESPONSIBLE PERSON

Report Documentation Page

Form Approved OMB No. 0704-0188

COLLABORATION AND KNOWLEDGE MANAGEMENT (CKM) PROGRAM

STRUCTURAL MODEL OF TEAM COLLABORATION

(MACRO-COGNITIVE PROCESS FOCUS)

Problem Area Characteristics

Collaborative Situation Parameters:

- time pressure
- information/knowledge uncertainty
- dynamic information
- large amount of knowledge (cognitive overload)
- human-agent interface complexity

Team Types

- asynchronous
- distributed
- culturally diverse
- heterogeneous knowledge
- unique roles
- command structure (hierarchical vs. flat)
- rotating team members

Operational Tasks

- team decision making, COA selection
- develop shared understanding
- intelligence analysis (team data processing)

Mechanisms for achieving Meta, Macro, and Micro-Cognitive Processes (applies to all stages)

- <u>Verbal communications</u>: presenting and discussing individual information, discussing team generated information. questioning, agreeing / disagreeing, negotiating perspectives, discussing possible solutions, providing rationale.
- Non-Verbal communications: facial expressions, voice clues (vocal paralanguage), hand gestures, body movements (kinesics), touch (haptics), personal space, drawing, text messages, augmented video, affordances (cognition in objects).

Collaboration and Cognition

Collaboration and Cognition

Team Recognition Primed Decision Making

- Knowledge is <u>not</u> action.
- Knowledge is situational.
- Action is in the situation. (Peter Keen)

9/03

The Model Human Processor

(from Card, Moran, and Newell)

Multiple Independent Channels of Working Memory

(Baddeley)

Memory Chunks

(Simon, etc.)

Template Theory

- Recent refinement of memory chunks (Gobet and Simon, 1996, 1998, 2000)
- Experienced people create complex structures called "templates"
- Templates have a *core*, *slots* and *linkages* to other templates which facilitate **fast** access to long term memory
- Templates can store at least 10 items and are often labeled

Chess Template

a)

Template-core:

White &c4, &d5, &e4, &f2, &g2, &g1, &c3, &e2
Black ▲c7, ▲d6, ▲e5, ▲f7, ▲g6, ▲h7, &g8, &c8, ▲f6, &g7

Slot for pieces:

Slot for squares:

d2: ②, 兔, empty e8: 罩, ▲, empty e1: 罩, ②, empty

Slot for opening: King's Indian Defense

Slot for plans: Break in the center with f7-f5

Slot for moves: 1... Nf6-e8

1... Nf6-h5

Links to other templates: chunk #231

9/03

Template Creation

- Goal Oriented: a deliberate, conscious process
- Perceptual: a continuous, automatic process
- Perceptual dominates in many areas, i.e. verbal learning, chess expertise and problem solving.

Template Theory

Core Items

- Used to Discriminate and Retrieve from Long Term Memory
- Pattern Recognition
- Slot Items
 - Represent Context
 - Diagnostic
 - Response Selection

9/03

Collaboration and Cognition

Team Recognition Primed Decision Making

Experimental Design

Pattern Sharing

9/03

FY '04 Progress

- Training Cells:
 - Item Training and Chunk Tool (7 groups)
 - Chunk Training and Item Tool (6 groups)
- Pilot Expertise Process (6 groups)
- Pilot chat/geographic anchor with NEO (8 groups)
- IEEE Transactions on Professional Communication
 - last year's results conditionally accepted with minor revisions
- International Journal of e-Collaboration (in press)
- DSS'04 Conference (fast track to DSS Journal)
- HICSS Conference (last week)

Decision Game

- Cooperative 3-Player Game
- Each player has 7 Tokens (numbered 1-7)
- Opponent has asymmetric force
 - Patterns: Definitive, Equivocal, Uncertain
- Team places tokens so total >= opponent
- Incentive
 - -For total points
 - For time of play
- Play is interactive

Experimental Task

Our Patterns as Templates

Slot

© Hayne and Smith (2005)

Core

Experimental Setting

Hypotheses

- Team members will play their tokens in a core region prior to playing tokens in a slot region.
- Team members will bump each others' tokens more in a slot region than in a core region when under uncertainty.
- Teams trained with goal-oriented chunking processes will outperform teams trained with automatic chunking processes.

20

9/03

Definitive Performance

Tool

	None	Item	Chunk
Item	6.00	6.26	6.86
Chunk	6.64	6.93	6.65

Training

Equivocal Performance

Tool

	None	Item	Chunk
Item	5.70	5.88	6.29
Chunk	5.99	5.95	6.02

Training

Sharing Count - Team Average

Tool

		Item	Chunk
Training	Item	197	35
1 i wiii ii g	Chunk	229	59

Sharing Correctness - Equivocal

Tool

		Item	Chunk
Training	Item	0.32	0.34
Tiwiiiig	Chunk	0.35	0.33

Movement – Definitive

Tool Item Chunk 114 (core) 221 177 (slot) 172 Chunk 91 152 112 195

Measure: cumulative order (lower is earlier play)

Bumping (Core/Slot)

		<i>To</i> ol Item	ol Chunk	
	Item	.20 (core) .43 (slot)	.27 .12	Definitive
Tanaina	Chunk	.02 .06	.31 .68	Deminerve
Training	Item	.23 .41	.22 .23	Equivocal
	Chunk	.04 .08	.43 .57	Lquivocai

 Chunk sharing provides best performance when trained with item details (no uncertainty)

None	Item	Chunk
6.00	6.26	6.86

• Chunk sharing provides best performance when trained with item details (uncertainty)

None	Item	Chunk
5.70	5.88	6.29

 Sharing tool has no effect when trained with templates (uncertainty)

None	Item	Chunk
5.99	5.95	6.02

© Hayne and Smith (2005) 29

9/03

• Difference in process with respect to core/slot data under uncertainty (chunk sharing)

Cognitive Fit Summary

- Team members will play their tokens in a core region prior to playing tokens in a slot region – partial support
- Team members will bump each others' tokens more in a slot region than in a core region under uncertainty supported
- Teams trained with goal-oriented chunking processes will outperform teams trained with automatic chunking processes – partial support

Expertise – Correct SA

	Definitive	Equivocal
Core	.855	.443
Slot	.551	.430

Expertise Pilot Study

Situation Assessment (Definitive Patterns)

-Best Team (94%, 36%, 48%)

-Worst Team (76%, 45%, 55%)

-2nd Best Team (86%, 89%, 61%)

Situation Assessment (Uncertain Patterns)

-Best Team (73%, 26%, 28%)

-Worst Team (48%, 40%, 46%)

-2nd Best Team (64%, 25%, 32%)

Best team has one exceptional player

- Worst team has 3 mediocre players
- -2^{nd} best team has one good player

Expertise and Process (Bumps)

		Definitive	Uncertain
	1:	5 (20%)	42 (59%)
Best	2:	1 (100%)	22 (36%)
	3:	3 (66%)	29 (45%)
	1:	0 (0%)	4 (25%)
Worst	2:	0 (0%)	2 (100%)
	3:	0 (0%)	1 (0%)
	1:	2 (0%)	9 (67%)
2 nd Best	2:	1 (0%)	4 (75%)
	3:	2 (0%)	10 (26%)

Expertise and Process (Bumps)

		Definitive	Uncertain
	1:	5 (20%)	42 (59%)
Best	2:	1 (100%)	22 (36%)
	3:	3 (66%)	29 (45%)
	1:	0 (0%)	4 (25%)
Worst	2:	0 (0%)	2 (100%)
	3:	0 (0%)	1 (0%)
	1:	2 (0%)	9 (67%)
2 nd Best	2:	1 (0%)	4 (75%)
	3:	2 (0%)	10 (26%)

More bumping under uncertainty

Expertise and Process (Bumps)

TT / '

		Definitive	Uncertain
Best	1:	5 (20%)	42 (59%)
	2:	1 (100%)	22 (36%)
	3:	3 (66%)	29 (45%)
Worst	1:	0 (0%)	4 (25%)
	2:	0 (0%)	2 (100%)
	3:	0 (0%)	1 (0%)
	1:	2 (0%)	9 (67%)
2 nd Best	2:	1 (0%)	4 (75%)
	3:	2 (0%)	10 (26%)

D C 7.

Best Team
Bumps Most

Expertise and Process (Bumps)

	_	Definitive	Uncertain
Best	1[:	5 (20%)	42 (59%)
	2:	1 (100%)	22 (36%)
	3:	3 (66%)	29 (45%)
	1:	0 (0%)	4 (25%)
Worst	2:	0 (0%)	2 (100%)
	3:	0 (0%)	1 (0%)
	1:	2 (0%)	9 (67%)
2 nd Best	2:	1 (0%)	4 (75%)
	3:	2 (0%)	10 (26%)

Best Player Bumps Most of ALL

Expertise, Process and Core/Slot

All Patterns

1: 50 (24c, 26s)

Best 2: 20 (5c, 15s)

3: 32 (15c, 17s)

1: 4 (4c, 0s)

2: 2 (2c, 0s)

1 (0c, 1s)

1: 11 (5c, 6s)

2nd Best 2: 5 (3c, 2s)

5: 21 (18c, 3s)

Worst

Expertise, Process and Core/Slot

	All Patterns	Uncertain
Best	50 (24c, 26s)	45 (24c, 21s)
	20 (5c, 15s)	19 (14c, 5s)
	32 (15c, 17s)	29 (13c, 16s)
Worst	4 (4c, 0s)	4 (4c, 0s)
	2 (2c, 0s)	2 (2c, 0s)
	1 (0c, 1s)	1 (0c, 1s)
2 nd Best	11(5c, 6s)	9(5c, 3s)
	5 (3c, 2s)	4 (3c, 1s)
	21 (18c, 3s)	19 (17c, 2s)

Best Players Never Bumped on CORE data in Definitive Condition

Training Study

• Difference in process with respect to core/slot data under uncertainty (chunk sharing)

 $T_{\alpha\alpha}I$

	1001			
		Item	Chunk	
Training	Item	.20 (core) .43 (slot)	.27 .12	Definitive
	Chunk	.02 .06	.31	
	Item	.23 .41	.22 .23	Equivocal
	Chunk	.04 .08	.43	

Findings

- Best players exhibit interaction between uncertainty and core/slot
 - Definitive: bump slot data exclusively
 - Uncertainty: bump core/slot data equally

Chat Tool Pilot Study

- Research Question:
 - How does template theory apply to typical chat interactions?
 - Cueing templates through geographic anchoring?
 - Cueing templates through transactive memory, i.e. personal identifiers (window labels)?
 - How are core and slot data shared in this context?
- NEO Scenario

NEO Observations

- Difficult task for non-military participants
 - Much knowledge is assumed, e.g. C-130 landing on an aircraft carrier.
- Discussion converges to single chat window
 - Reflects good decision process
- Repeated Theme:
 - "I want a place for me, and a place to share"
 - Suggests template cueing strategy based on personal identity

45

9/03

Transitions to Navy Tasks

Principles

- Train using goal-orientation (templates)
- Provide "chunk" Pattern-Sharing Tool for SA
- Provide tool in Action Tasks for manipulating "slot" data
- Transform Effortful Cognitive Tasks into Simple Perceptual Tasks

FY 2005 Plans and Onward

- Template Theory and Context
 - —Core data critical during Situation Assessment
 - —Slot data critical during Response Selection
- Template Theory and Uncertainty
 - —Core data shared when less uncertainty
 - —Slot data shared when more uncertainty

FY 2005 Plans and Onward

- Dynamic Creation of Templates
 - —Goal Orientation vs. Perceptual
 - -Cognitive Centrality (knowledge overlap)

- Algorithm Development
 - Detection of cognitive mis-alignment
 - Metrics for measuring same

9/03

Questions?